APOBEC-mediated cytosine deamination links PIK3CA helical domain mutations to human papillomavirus-driven tumor development.
نویسندگان
چکیده
APOBEC3B cytosine deaminase activity has recently emerged as a significant mutagenic factor in human cancer. APOBEC activity is induced in virally infected cells, and APOBEC signature mutations occur at high frequency in cervical cancers (CESC), over 99% of which are caused by human papillomavirus (HPV). We tested whether APOBEC-mediated mutagenesis is particularly important in HPV-associated tumors by comparing the exomes of HPV+ and HPV- head and neck squamous cell carcinomas (HNSCCs) sequenced by The Cancer Genome Atlas project. As expected, HPV- HNSCC displays a smoking-associated mutational signature, whereas our data suggest that reduced exposure to exogenous carcinogens in HPV+ HNSCC creates a selective pressure that favors emergence of tumors with APOBEC-mediated driver mutations. Finally, we provide evidence that APOBEC activity is responsible for the generation of helical domain hot spot mutations in the PIK3CA gene across multiple cancers. Our findings implicate APOBEC activity as a key driver of PIK3CA mutagenesis and HPV-induced transformation.
منابع مشابه
Somatic Host Cell Alterations in HPV Carcinogenesis
High-risk human papilloma virus (HPV) infections cause cancers in different organ sites, most commonly cervical and head and neck cancers. While carcinogenesis is initiated by two viral oncoproteins, E6 and E7, increasing evidence shows the importance of specific somatic events in host cells for malignant transformation. HPV-driven cancers share characteristic somatic changes, including apolipo...
متن کاملAPOBEC Enzymes: Mutagenic Fuel for Cancer Evolution and Heterogeneity.
UNLABELLED Deep sequencing technologies are revealing the complexities of cancer evolution, casting light on mutational processes fueling tumor adaptation, immune escape, and treatment resistance. Understanding mechanisms driving cancer diversity is a critical step toward developing strategies to attenuate tumor evolution and adaptation. One emerging mechanism fueling tumor diversity and subclo...
متن کاملMolecular targeting of mutagenic AID and APOBEC deaminases
Purposeful genomic mutation mediates critical aspects of both adaptive and innate immunity. A physiological role for purposeful mutation is best illustrated by the AID/APOBEC family of enzymes, which can deaminate cytosine to introduce rogue uracil bases into DNA. In adaptive immunity, introduction of unnatural uracil into the immunoglobulin locus by activation-induced deaminase (AID) seeds the...
متن کاملAID/APOBEC deaminases disfavor modified cytosines implicated in DNA demethylation
Activation-induced deaminase (AID)/APOBEC-family cytosine deaminases, known to function in diverse cellular processes from antibody diversification to mRNA editing, have also been implicated in DNA demethylation, a major process for transcriptional activation. Although oxidation-dependent pathways for demethylation have been described, pathways involving deamination of either 5-methylcytosine (...
متن کاملDNA cytosine and methylcytosine deamination by APOBEC3B: enhancing methylcytosine deamination by engineering APOBEC3B
APOBEC (apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like) is a family of enzymes that deaminates cytosine (C) to uracil (U) on nucleic acid. APOBEC3B (A3B) functions in innate immunity against intrinsic and invading retroelements and viruses. A3B can also induce genomic DNA mutations to cause cancer. A3B contains two cytosine deaminase domains (CD1, CD2), and there are conflictin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell reports
دوره 7 6 شماره
صفحات -
تاریخ انتشار 2014